IMPORTGEO-CAD User Guide GeoDict release 2022 Published: November 22, 2021 | IMPORTGEO SUBMODULES | | | |---|----------------------------|--| | FILE FORMATS FOR IMPORTGEO-CAD | 2 | | | IMPORTGEO-CAD | 3 | | | IMPORT VOXELS AND/OR IMPORT SURFACE SURFACE MODE DOMAIN SIZE (LENGTH X, LENGTH Y, LENGTH Z) AND SHIFT VOXELIZE PER COMPONENT OR OBJECT NUMBER OF MESHES MATERIAL AND MATERIAL ID SELECTION DEFINE DEFAULT OVERLAP | 5
5
6
6
6
6 | | | Visualization of surface meshes | 9 | | # IMPORTGEO SUBMODULES The three ImportGeo submodules can handle and import most 2D and 3D image file formats into GeoDict. - ImportGeo-Base loads structure files with a GeoDict file format. For more information, check the ImportGeo-Base handbook of this User Guide. - ImportGeo-Vol is used to import most image file formats for 3D visualization, 3D image processing and segmentation. On imported gray value images, ImportGeo-Vol can perform 3D processing with a variety of filtering techniques. Subsequent segmentation converts gray values to material index values typically stored in the GeoDict Binary file format. For more information, check the ImportGeo-Vol handbook of this User Guide. - ImportGeo-CAD imports surface triangulation files that describe only the surface geometry of a three-dimensional object. During import, these files can be converted to 3D material models. The three ImportGeo submodules import the following file formats: | ImportGeo
submodule | File formats | | | | | |------------------------|--------------------------------------|--------------------------------|-----------------------------|---------------------------------------|--| | ImportGeo-
Base | GeoDict Binary
(*.gdt) | GeoDict
Analytic
(*.gad) | GeoDict ASCII
(*.leS) | GeoDict 32BIT
(*.g32) | | | ImportGeo- Vol | 1, 2 or 4 Byte
Integer
(*.raw) | 4 Byte Float
(*.vol) | GeoDict Raw
File (*.grw) | GeoDict Binary
(*.gdt) | | | | GeoDict ASCII
(*.leS) | GeoDict 32BIT
(*.g32) | Rek File (*.rek) | Zeiss 3D Image
(*.txm) | | | | Avizo Binary
File (*.am) | WiseTex Vox
File (*.vox) | IASS File
(*.iass) | TIF Image File
(*.tif)
(*.tiff) | | | | BMP Image File
(*.bmp) | CUR Image File
(*.cur) | GIF Image File
(*.gif) | ICO Image File (*.ico) | | | | JPEG Image File
(*.jpeg) | JPG Image File
(*.jpg) | PBM Image File
(*.pbm) | PGM Image File
(*.pgm) | | | | PNG Image File
(*.png) | PPM Image File
(*.ppm) | SVG Image File
(*.svg) | SVGZ Image
File
(*.svgz) | | | | XBM Image File
(*.xbm) | XPM Image File
(*.xpm) | | | | | ImportGeo-CAD | STL File (*.stl) | OBJ File (*.obj) | | | | ## FILE FORMATS FOR IMPORTGEO-CAD CAD models are usually not stored as volumetric data. Rather, such models are described by the surface(s) of the modeled objects. Commonly, those surfaces are modeled as a set of connected triangles. ImportGeo-CAD is GeoDict's module to read such triangulations, and to transform them into a volumetric voxel mesh. Two file formats can be imported with ImportGeo-CAD: ■ **STL** (STereoLithography CAD format) surface triangulation files describe only the surface geometry of a three-dimensional object without any representation of color, texture, or other attributes. The STL format specifies both ASCII and binary representations. Binary files are more common, since they are more compact. For more information see: https://en.wikipedia.org/wiki/STL (file format). ■ **OBJ** is a geometry definition file format first developed by Wavefront Technologies for its Advanced Visualizer animation package. The file format is open and has been adopted by other 3D graphics application vendors as well. The OBJ file format is a simple data-format that represents 3D geometry alone — namely, the position of each vertex, the UV position of each texture coordinate vertex, vertex normals, and the faces that make each polygon defined as a list of vertices, and texture vertices. Vertices are stored in a counterclockwise order by default, making explicit declaration of face normals unnecessary. OBJ coordinates have no units, but OBJ files can contain scale information in a human readable comment line. For more information see https://en.wikipedia.org/wiki/Wavefront.obj file. Mesh File (*.stl *.obj) Cancel # **IMPORTGEO-CAD** To import CAD models in GeoDict formats, ImportGeo-CAD select Import → ImportGeo-CAD in the menu bar. The ImportGeo-CAD section STL File (*.stl), OBJ File (*.obj) Browse ... opens at the left of the GeoDict GUI. Help Data in the *.stl and *.obj formats can be selected by clicking Browse.... Through the opening **Select File** dialog, locate a file of that format in the chosen project folder. Select the file name and click **Open**. A single file or multiple files can be chosen at once. Select File Search ImportGeoCAD ↑ UserGuide > ImportGeoCAD Organize * New folder . Name Date modified Туре Size ✓ **♦** Casing.stl 3/25/2019 5:23 PM STL File 2,438 KB ✓ 🌢 Pleat.stl 3/25/2019 5:23 PM STL File 24,204 KB When all files to import have been selected, click **Open**. The CAD Import dialog that opens already shows how many meshes are contained in the selected files. File name: "Pleat.stl" "Casing.stl" First, set the **Unit in File**. The floating point values stored inside an STL file may denote different units. This information is not stored in the STL file itself, so it has to be set manually. After the unit has been set, the extension of the CAD objects in X,Y,Z direction are shown in the **Min Coordinate** and **Max Coordinate** fields at the bottom of the dialog. In this example, the structures span a range from -100 mm to 100 mm in Y-direction. Next, define the bounding box (domain size) of the voxel structure. It is possible to enter the values manually or to find a box that completely contains the structures to import automatically by clicking **Suggest**. Two options are available: With **Choose Voxel Count**, the suggested resolution is set in such a way that the imported structure spans roughly the given **Voxel Count** grid cells in its longest direction. With **Choose Voxel Length**, the resolution is fixed to the given **Voxel Length**. After clicking on **OK**, the selected STL files are parsed and the values of the suggested bounding box are entered in the dialog. ## Import Voxels and/or Import Surface In the selection on the top left, choose what ImportGeo-CAD should import **Import Voxels** creates a voxel mesh, that can afterwards be used by all GeoDict modules for simulations and analysis. To turn the surface mesh into a volumetric voxel mesh, each voxel is assigned a material based on the location of the voxel center. If the center lies *inside* of the triangulated surface, it is assigned to the selected material. Here, *inside* and *outside* are defined by the face normals of the triangles. **Import Surface** loads the triangulated surface as stored in the STL or OBJ file into GeoDict. The surface can then be visualized in GeoDict. It can also be modified with MeshGeo and the modified surface can be exported again with ExportGeo-CAD. The loaded surface triangulation cannot be used to run simulations with any of GeoDict's other modules. **Import Voxels & Surface** loads the surface and creates a voxel mesh as described above. Surface Mode This option is only available when **Import Surface** has been selected. | Surface Mode | Create New Structure | * | Create New Structure | |--------------|----------------------|---|--| | | | | Keep Existing Structure and Discard Mesh | | | | | Keep Existing Structure and Mesh | **Create New Structure** erases the current structure (if present) and creates a new domain around the imported surface(s). **Keep Existing Structure and Discard Mesh** adds the imported surfaces into the current domain, keeps any existing voxel structures, but discards all previously imported or created surface meshes. **Keep Existing Structure and Mesh** adds the imported surfaces into the current domain, keeps any existing voxel structures, and also keeps all previously imported or created surface meshes. When the structure is kept, the parameters **LengthX**, **LengthY**, **LengthZ**, **Voxel Length**, and **NX**, **NY**, **NZ** are fixed and cannot be changed. Only the **Shift** values can be modified to move the imported object into the right position. If you need to distinguish the newly imported surfaces from any previously imported ones, make sure to select new Material ID for it. Domain Size (Length X, Length Y, Length Z) and Shift The domain size and shift values are automatically suggested in such a way that the complete surface mesh(es) is(are) inside of the domain. The domain size is defined by the parameters **LengthX**, **LengthY** and **LengthZ**. The chosen **Voxel Length** defines the number of voxels **NX**, **NY** and **NZ** in each of the space directions. The origin of the created domain is fixed at (0,0,0). To move the imported meshes inside of the domain, **ShiftX**, **ShiftY** and **ShiftZ** are added to the coordinate values when importing the surface meshes. In the above example, the min. coordinate value in X-direction lies at -0.1 m, which is shifted by 100 mm to end up at 0.0 at the exact boundary of the domain. Voxelize per Component or Object This option is only available when **Import Voxels** or **Import Voxels & Surface** has been selected. If checked, each triangle mesh is subdivided into connected components first, and then each component is imported and voxelized separately. Be aware that choosing this option might strongly increase the runtime of importing the mesh. Additionally a Label image is created that stores the id of the components to allow later modification of individual components. When object IDs are present in a stl file these are used as component indices. #### Number of Meshes The number of meshes present in the selected files is automatically entered. Typically, the number of meshes corresponds to the number of chosen files, but OBJ files might contain multiple meshes. #### Material and Material ID selection The table is automatically filled when **Suggest** inputs the parameters into the dialog. The first column contains the name of the mesh file. It may include the name of the mesh plus a number if a file contains several meshes. A material can be assigned to the listed mesh by clicking its button in the second column. For example, the material of the **Casing** can be set to Aluminum, and the material of the **Pleat** to a porous material filled with air. #### Define Default Overlap Meshes might overlap if several files for meshes are imported, so that some voxels possibly belong to several materials. With this option, the user can assign a specific material to overlap regions. If no default overlap is defined by the user, the material ID of the overlap regions is automatically computed through a binary addition of the IDs of the overlapping materials. When all settings have been checked, click **Import** to load the structure. If **Import Voxels** was selected, the structure is available as voxel grid afterwards for further computations with other GeoDict modules. It can be visualized as any other generated or imported voxel mesh, see the <u>Visualization</u> handbook of this User Guide for more details. If **Import Surface** was selected, the original surface triangulation is loaded and can be visualized as described in the following chapter. ### VISUALIZATION OF SURFACE MESHES When a surface triangulation is loaded, the structure appears in the Visualization area of the GUI and, above in the Visualization panel, the **Triangles** tab becomes activated. Modifying the parameters allows to visualize the triangles in different ways. When visualizing triangulated surfaces, and to observe the difference between the **View Mode** and **Coloring** choices, the visualization of the voxelized structure must be switched off by unchecking the **Structure** tab. The user can choose between different **View Modes** and **Coloring** schemes: The **Features** pull-down menu allows to visualize vertices, midpoints, face, and vertex normals. Two different **Transparency Modes** are available, which allow to visualize the inner parts of the structure: With the **Visible Meshes** pull-down menu, the visualization of every imported mesh can individually be switched on and off. With the help of the **Clip** sliders, the region to be shown can be adjusted. https://doi.org/10.30423/userguide.geodict2022-importgeocad Technical documentation: Jürgen Becker Andreas Griesser Barbara Planas Math2Market GmbH Richard-Wagner-Str. 1, 67655 Kaiserslautern, Germany www.geodict.com $^{^{\}odot}$ Fraunhofer Institut Techno- und Wirtschaftsmathematik ITWM, 2003-2011. [©] Math2Market GmbH, 2011-2022. All rights reserved.