GEODICT

The Digital Material Laboratory

GEODICT WORKFLOW FOR NONWOVENS GENERATION OF A DIGITAL TWIN OF A NONWOVEN ■ Import of a µCT scan of a nonwoven ■ Fiber analysis using the module FiberFind Automatic generation of a digital twin based on the FiberFind results Computation of physical properties run on the µCT scan and the digital twin

GEODICT WORKFLOW FOR DIGITAL NONWOVEN DEVELOPMENT

Import and

Image processing of the μ CT scans of a nonwoven:

- Cutout of a µCT scan of a large nonwoven
- ImportGeo-Vol module of GeoDict was used to import, process, and segment the scanned images
- ImportGeo-Vol offers a complete image processing toolbox including various image filters and AI based segmentation

Result: Digital model of the nonwoven

- FiberFind module was used to analyze the digital model and obtain relevant information about fibers
- The information obtained is used to evaluate the sample with regards to geometrical characteristics such as:
 - Fiber diameter
 - Fiber orientation
 - Fiber curvature

<u>Generation of</u>

Result: Statistical description of fibers

- Generation of a digital twin of the nonwoven using the module FiberGeo
- Automatic optimization of properties, such as:
 - Fiber shape
 - Through-thickness distribution
 - Fiber diameter
 - Fiber orientation
 - Fiber curvature

Result: Digital twin of the nonwoven

Comparison of

Scan

Z-permeability: 4.92e-09 m²

- Statistical characterization and evaluation of the digital twin:
 - Comparison between digital twin and scan
 - Analysis of fiber structure
 - Comparison of physical properties in this case permeability
- The digital twin is a good representation of the statistical properties of the scan

Result: Validated digital twin of the nonwoven

Math2Market GmbH | Richard-Wagner-Str. 1 | 67655 Kaiserslautern, Germany www.GeoDict.com

Z-permeability: 5.21e-09 m²

