GEODICT ## Case Study Material-CAE for Composites #### **Our Mission** The composite industry faces challenging questions. - Does the new composite material improve my component? - Does it combine sufficient stiffness with low weight? - Do I understand the microscopic behavior of the composite for my component simulation? GeoDict, the digital material laboratory, provides answers to such questions. It helps to avoid trial-and-error and to prototype only the most promising composites. GeoDict's material-CAE bridges the gap between process-CAE and structure-CAE. Compute composite material properties, e.g. for component simulations, on detailed 3D material models or μ CT scans. GeoDict's accurate and quick computations run on standard hardware. Here, we analyze the material properties of an engine bearer. The component's composite is PA 66 GF50 (polyamide, 50% glass-fibers). #### Workflow **Scanning** of small pieces of the engine bearer to resolve features of the fibers by μ CT. In the resulting grayscale image, the brightness correlates to the constituent materials within the object. **Segmenting**, which refers to the identification and labeling of fibers and matrix within the μ CT scan, as a foundation for later simulations. **Geometric analysis** on the segmented μ CT scan, to obtain fiber weight percentage, fiber diameters, and local fiber orientation. **Simulating** important material properties on the segmented μ CT scan, like thermal conductivity, mechanical behavior, and material failure. **Modelling** of the micro structure with given statistics e.g. for fiber diameter distribution and fiber orientation distribution. If these are known from process-CAE, the workflow does not require a μ CT scan. **Optimization** by changing the statistical parameters or the constituent materials of the model. For this case, segmentation of the μCT scan into glass fibers and polyamide matrix is done with image processing module ImportGeo to get 30% solid volume percentage for the fibers (weight percentage 50%). [1] [2] [3] - [1]: PA66 GF50 - [2]: Fiber orientation - [3]: Thermal conductivity #### **Composite properties analyzed with GeoDict** #### Fiber structure is analyzed with FiberGuess, Fig. [2], [6]: Fiber diameter: 8.56 +/- 1.9 µm | Fiber orientation tensor | | | | | | |--------------------------|--------|-------|--|--|--| | 0.597 | -0.050 | 0.145 | | | | | - | 0.143 | 0.003 | | | | | - | - | 0.260 | | | | [4] ### Thermal conductivity is simulated with ConductoDict assuming conductivities 0.76 W/(mK) for glass and 0.33 W/ (mK) for polyamide. | Thermal conductivity | (W/mK) | |----------------------|--------| | GeoDict | 0.43 | | Product Datasheet | 0.37 | [5] #### **Effective linear elastic properties** are simulated with ElastoDict, assuming Young's modulus E = 86.9 GPa and Poisson ratio v = 0.2 for the fibers (S2-Glass), and E = 3 GPa and v = 0.15 for the polyamide matrix (Fig. [4]). The Young's modulus of the composite parallel and perpendicular to the fibers is shown in Fig. [5]. #### Thermal expansion tensor is computed with ElastoDict, assuming 5e-06 1/K as linear thermal expansion coefficient of glass and 8e-05 1/K for polyamide. | Thermal exp | ansion ten | sor (1/K) | |-------------|------------|-----------| | 16 060 | 2 602 | 10 140 | | 16.060 | 2.603 | -10.140 | |---------|--------|---------| | 2.603 | 38.970 | -6.010 | | -10.140 | -6.010 | 34.930 | [6] #### Cyclic tensile experiment with 6% strain in z-direction. Consider matrix damage, modeled by an Abaqus UMAT in ElastoDict, Ref. [1],[2]. Fiber breakage is not considered. The resulting strain-stress curve is shown in Fig. [7]. #### Composite design is done with the module FiberGeo, where input parameters are fiber weight percentage, tions on the elastic properties studied. | Fiber SVP (%) | 25 | 30 | 35 | |-----------------------|------|------|------| | Young's Modulus [GPa] | 11.9 | 13.7 | 16.2 | fiber diameter distribution, and fiber orientation. Models with different solid volume percentages are created and the influence of density varia- 71 #### References [1] J. Spahn, H. Andrä, M. Kabel, R. Müller, A multiscale approach for modeling progressive damage of composite materials using fast Fourier transforms, Computer Methods in Applied Mechanics and Engineering, Volume 268, Pages 871-883, ISSN 0045-7825, 2014. [2] J. Sliseris, H. Andrä, M. Kabel, B. Dix, B. Plinke, O. Wirjadi, G. Frolovs, Numerical prediction of the stiffness and strength of medium density fiberboards, Mechanics of Materials. 01/2014 - [4]: Von Mises Strain - [5]: Elastic Properties - [6]: Fiber Diameter Distribution - [7]: Cyclic tensile experiment with matrix damage Math2Market GmbH, Germany E-Mail info@math2market.de Phone +49 631 205605 0 Fax +49 631 205605 99 Find us on: