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SOME BACKGROUNDINFORMATION
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Math2Market GmbH 

Á creates and markets the scientific software GeoDict® .

Á was spun off in 2011 from Fraunhofer ITWM in Kaiserslautern.

Á is an privately owned company based in Kaiserslautern, Germany.

GeoDict® - The Digital Material Laboratory

Á is a software tool to analyze and design porous media and composites.

Á works on 

Á µCT and FIB-SEM 3D images or

Á random geometric material models.
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SEGMENTEDCT-SCAN OF A

NON-WOVEN STRUCTURE
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18310 x 4816 x 1704 (>150 billion ) voxels, 4.4 x 1.2 x 0.4 cm³, 2.4 µm voxel length
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INTRODUCTION
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Á 3d imaging devices (e.g. µCT) allow deep insights into the structures of porous materials

Á 2000³ (8 billion) voxels is a standard size - imaged and reconstructed within hours

Á Very fast and memory efficient methods are needed to deal with these images

Á Researchers and engineers are interested in effective material properties such as

Á permeability, pressure drop and mean velocity

Á thermal and electrical conductivity, diffusivity and tortuosity,

Á stiffness, strain, stress, or elastic moduli,

Á saturation- or compression-dependent properties (e.g. relative permeability)

Á Bottleneck of classical finite-element or -volume methods is the meshing step

Á Runtime of the meshing step can take more runtime than the actual solving

Á Manual adjustment of the mesh is often required

Á Lattice-Boltzmann (LB) methods are advancing fast and do not require meshing

Á But they require a lot of memory due to the D3Qm lattices

Á Here, we present specialized finite-volume methods designed for large 3d images
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Mechanics

OUTLINE

© Math2Market GmbH-- 7 --

01 Introduction

02

Single-Phase Flow

Direct numerical methods

1. Explicit Jump

2. SIMPLE-FFT

3. LIR

4. Lippmann Schwinger

5. Pore Morphology

03 Application examples



The Digital Material LaboratoryThe Digital Material Laboratory

çP-DRIVENSTOKES
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◊, p periodic on  with boundary Ū, 

except for pressure drop P1-P2 = c 

As usual: u: velocity

p: pressure

Ȋ: dynamic viscosity

ό: mean velocity

Darcyõs law:ό
╚

In the linear regime, i.e. for Stokes flow, the permeability K is a material 

property, independent of viscosity, density, and velocity of the fluid.

PressureP2
Pressure P1

ὒ
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STAGGEREDGRID
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Á We present three different single-phase 

stationary Stokes flow solver methods

Á Each has its own advantages and 

disadvantages

Á Common denominator is the staggered 

grid discretization on voxel grids

Á Staggered grid discretization [Harlow & Welch, 1965]

Á Pressure lives at the center of the voxel

Á Velocity components live at the center of 

the different voxel faces

♫ X-Velocity lives at the vertical X-faces

♫ Y-Velocity lives at the horizontal Y-faces

♫ Z-Velocity lives at the Z-faces
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Staggered grid for velocity variables
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EXPLICITJUMP METHODS
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Á Basic idea: introduce jump variables ‗in the 

momentum equation for no -slip conditions

‘Ўό ὴ ɰ‗ Ὢ

Á Then we apply the divergence operator ẗto 

the momentum equation

‘ɝẗό ɝὴ ẗɰ‗ ẗὪ
ɝὴ ẗɰ‗ ẗὪ

Á The no-slip boundary condition is discretized by

ɭό π

Á The final system of equations is given by

‘ɝ  ɰ
π ɝ ẗɰ
ɭ π π

ό
ὴ
‗

Ὢ
ẗὪ
π

Á A Schur-complement eliminates velocity and pressure 

and the remainder ὓ‗ ὦis solved by Krylov subspace 

methods and FFTs[Wiegmann, 2007]

Staggered grid for velocity variables with 

jumps for no-slip conditions

(1)

(2)

(3)
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EXPLICITJUMP METHODS
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Á The location of the jump variables depends on the specific no-slip 

discretization

Á The natural domain boundary conditions are periodic

Á Symmetric boundary conditions can be achieved by mirroring of the 

structure or using cosine transforms

Á The convergence depends on the number of jump variables

Á Convergesvery fast for highly porous structures

Á Requiresmuch lessmemory compared to LB methods

Á Not (yet) extended to Navier-Stokes-Brinkman equations

Á The Explicit Jump methods can also be used to solve poisson equations

Á Convergence speed is independent of the phase contrast!
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SIMPLE-FFT METHOD
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Á SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithms are 

widely used to solve Navier-Stokes-Brinkman equations [Patankar, 1980]

Á The SIMPLE algorithm works as follow (start with ό and ὴ )

1. Solve the momentum equation with Gauß-Seidel and get όᶻ

2. Solve pressure correction equation ɝὴ ‘ɝẗόz which is simplified to 

ɝὴ ‘ÄÉÁÇɝ ẗόᶻ with Gauß-Seidel and get ὴ

3. Update pressure with ὴ ὴ ὴ

4. Correct velocity with ό όᶻ ÄÉÁÇɝ ὴɳ

Á The SIMPLE methods converge very slowly for low porosity structures due to the 

ineffective pressure correction step

Á Basic idea: Exact pressure correction by FFT instead of approximate solve in step 2.

Á Convergence speed dramatically higher than SIMPLE (up to 10 times)! 

Á Very fast for low porosity structures

Á Runtime per iteration is higher due to the FFT
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LIR METHODð1: MESHCOARSENING
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Á Adaptive grid: LIR-Tree [Linden et al., 2014]

Á Combination of Octree and KD-tree

Á Very low memory overhead

Á Efficient neighborhood retrieval

Á Grid adapts to geometry, 2:1 size ratios, 

velocity and pressure fields

Á Minimize the number of tree traversals per iteration by a 

special block pde formulation

Á This formalism allows to solve Navier-Stokes-Brinkman 

and Poisson equations with full anisotropy

Á Convergence speed depends on the number of cells 

and the porosity of the structure

Á Extremly fast for highly porous structures

Á Very low memory requirements

Adaptive grid inside the pore space of a 

Berea sandstone



The Digital Material LaboratoryThe Digital Material Laboratory

LIR METHODð2: BLOCKPDEFORMULATION
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Á Basic idea: split velocity variable όinto a left sided ὰand right sided ὶvariable

Á The momentum equation is discretized in two ways
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Á The mass conservation is discretized with
ό

ὼ
ᴼ
ρ

Ὤ
ὶ ὰ

Á The Stokes equations are discretized as linear block system of equations per cell and can 

be solved by block Gauß-Seidel / SOR methods combined with Multigrid [Linden et al., 2015]

ὴ ὴ ὴ

ὰ ὶ ὰ ὶ ὰ ὶ

ς ρ ρ
ρ ς ρ
ρ ρ π

ɇ

ὰ

ὶ

ὴ

ὰ ὴ

ὶ ὴ
π



The Digital Material LaboratoryThe Digital Material Laboratory

LIPPMANN SCHWINGERMETHODS
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Á Boundary value problem of linear elasticity: 

where όᶻis periodic and „ẗὲis anti-periodic

Á We introduce a reference material ὅ and define a polarization field †

† # ὅ ȡ

Á Hookeõs law can then be transformed to

„ ὅȡ †

Á Equilibrium of stresses can be solved by using the elastic Green operator ɜ

 Ὁ ɜ †z

Á Substitution of polarization yields the Lippmann Schwinger equation

 ɜᶻ ὅ ὅ ȡ Ὅ ὄ  Ὁ

ẗ„ π
„ ὅȡ
ς ςὉ όᶻ όᶻ

Equilibrium of stresses

Hookeõs law

[Moulinec,Suquet

1994,1998]
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LIPPMANN SCHWINGERMETHODS
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Á The Lippmann Schwinger equations can be solved by using Neumann series or 

Krylov subspace methods using FFT and is implemented in the FeelMath solver

Á Basis scheme with Neumann series[Kabel et al., 2014]

† ὅ ὅ ȡ
Ƕ† ὊὊὝ†
– ɜȡǶ†ȟ –π Ὁ

 ὊὊὝ –

Á Staggered grid for discretization of displacement, strain, and stress [Schneider et al., 2016]

Á Convergence speed is independent of grid size but depends on phase contrast ”

Á ”ײַ for Neumann series

Á ײַ ” for Krylov subspace methods

Á Supports isotropic and anisotropic constituent materials

Á Works for linear and non-linear constitutive equations of stresses

Á LS methods can also be used to solve conduction or flow equations
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TWO-PHASEFLOWS AND SATURATION-

DEPENDENTPROPERTIES
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Á The Explicit-Jump, SIMPLE-FFT, and LIR methods solve the single-phase 

stationary (Navier-)Stokes(-Brinkman) equations

Á But in many application areas, researchers are interested in 

saturation-dependent properties (e.g. relative permeability)

Á For relative permeability, we must solve two-phase flow equations 

instead of single-phase flow equations

Á We assume flow regimes where capillary forces caused by surface 

tension and capillary pressure are dominating (i.e. low capillary number)

Á Solving two-phase flow equations is very challenging and runtimes are 

very high

Á Here, we present an alternative approach ê
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POREMORPHOLOGYMETHODS
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ê predict the distribution of the two phases inside porous 

media and the capillary pressure curve

Basic Idea

Á òPushó spheres into/outside the structure & 

reduce/increase sphere radii [Hilpert and Miller, 2001]

Á Superposition of spheres represent the non-wetting 

phase

Á Perform connectivity checks to consider 

trapped/residual phases [Ahrenholz et al., 2008]

Á Use sphere radii & Young-Laplace ὴ ς ÃÏÓto 

predict the capillary pressure

Á Inscribe different contact angles by sphere radii 

[Schulz et. al., 2015]

Advantage

Á No partial differential equations are solved

Á Very low runtime & memory requirements

Assumption

Á Quasi-stationary phase distribution

Á Low capillary number

Water (WP) Reservoir

Oil (NWP) Reservoir
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1. Filtration

2. Digital Rock Physics

3. Battery Cathode Materials

4. Gas Diffusion Layers

5. Composites
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FILTRATIONSIMULATION AT DIFFERENTSCALES
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Single pleat

(macro/meso scale)
Filter media

(micro scale) 
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