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SOME BACKGROUNDINFORMATION GEODICT

Math2Market GmbH

A creates and markets the scientific software GeoDict®.
A was spun off in 2011 from Fraunhofer ITWM in Kaiserslautern.

A is an privately owned company based in Kaiserslautern, Germany.

GeoDict® - The Digital Material Laboratory

A is a software tool to analyze and design porous media and composites.

A works on
A uCT and FIBSEM 3D images or
A random geometric material models.
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IZVIATH

GEO

18310 x 4816 x 1704 (=150 billion ) voxels, 4.4 x 1.2 x 0.4 cm32.4 um voxel length

SEGMENTEDC T-SCAN OF A
NON-WOVEN STRUCTURE




INTRODUCTION GEODICT

A 3d imaging devices (e.g. uCT) allow deep insights into the structures of porous materials
A 200083 (8 billion) voxels is a standard size- imaged and reconstructed within hours

A Very fast and memory efficient methods are needed to deal with these images

A Researchers and engineers are interested in effective material properties such as
A permeability, pressure drop and mean velocity
A thermal and electrical conductivity, diffusivity and tortuosity,
A stiffness, strain, stress, or elastic moduli,
A saturation- or compression-dependent properties (e.g. relative permeability)

A Bottleneck of classical finite-element or -volume methods is the meshing step
A Runtime of the meshing step can take more runtime than the actual solving
A Manual adjustment of the mesh is often required

A Lattice-Boltzmann (LB) methods are advancing fast and do not require meshing
A But they require a lot of memory due to the D3Qm lattices

A Here, we present specialized finite volume methods designed for large 3d images MATH
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GEODICT

Single-Phase Flow

Mechanics

Two-Phase Flow

MATH

© Math2Market GmbH 2 MARKET




¢ P-DRIVEN STOKES GEODICT
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In the linear regime, i.e. for Stokes flow, the permeability K is a material
property, independent of viscosity, density, and velocity of the fluid. MATH
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STAGGEREDGRID

A

We present three different single-phase
stationary Stokes flow solver methods

A Each has its own advantages and
disadvantages

A Common denominator is the staggered
grid discretization on voxel grids

Staggered grid discretization Hariow & welch, 1965]
A Pressure lives at the center of the voxel

A Velocity components live at the center of
the different voxel faces

1 X-Velocity lives at the vertical X-faces
7 Y-Velocity lives at the horizontal Y-faces
7 Z-Velocity lives at the Z-faces

GEODICT

Staggered grid for velocity variables
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ExXPLICITIJUMP METHODS GEODICT

A Basic idea: introducejump variables_ in the
= u.. u. ..
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A The no-slip boundary condition is discretized by !
l o n (3) Staggered grid for velocity variables with

< . : L jumps for no-slip conditions
A The final system of equations is given by
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A A Schurcomplement eliminates velocity and pressure
and the remainder 0 _  wis solved by Krylov subspace
methods and FFTSwiegmann, 2007] o e G M,,ﬁlﬂ




ExXPLICITIJUMP METHODS GEODICT

A The location of the jump variables depends on the specific no-slip
discretization

A The natural domain boundary conditions are periodic

A Symmetric boundary conditions can be achieved by mirroring of the
structure or using cosine transforms

A The convergence depends on the number of jump variables
A Convergesvery fast for highly porous structures

A Requiresmuch lessmemory compared to LB methods
A Not (yet) extended to Navier-Stokes-Brinkman equations

A The Explicit Jumpmethods can also be used to solve poisson equations
A Convergence speed is independent of the phase contrast!
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SIMPLEFFT METHOD GEODICT

A SIMPLE (Semimplicit Method for Pressure Linked Equations) algorithms are
widely used to solve Navier-Stokes Brinkman equations (patankar, 1980]

A The SIMPLE algorithm works as follow (start withd and ry )
1. Solve the momentum equation with Gauf3-Seidel and get 6°

2. Solve pressure correction equationa) ‘ 3( to") which is simplified to
3) ‘A E&IC t0°) with Gaul>Seidel and getn

3. Update pressure with n n
4. Correct velocity with 6 6° AE[BAIQwn

A The SIMPLE methods converge very slowly for low porosity structures due to the
ineffective pressure correction step

Basic idea: Exact pressure correction by FFT instead of approximate solve in step 2

Convergence speed dramatically higher than SIMPLE (up to 10 times)!
A Very fast for low porosity structures
A Runtime per iteration is higher due to the FFT MATH
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LIR METHODO 1: MESHCOARSENING GEODICT

A Adaptive grid: LIR-Tree (Linden et al, 2014
A Combination of Octree and KD-tree
A Very low memory overhead R
A Efficient neighborhood retrieval | __
A Grid adapts to geometry, 2:1 size ratios, " T %
velocity and pressure fields

A Minimize the number of tree traversals per iteration by a .
special block pde formulation

A This formalism allows to solve Navier Stokes-Brinkman [ _
and Poisson equations with full anisotropy

A Convergence speed depends on the number of cells
and the porosity of the structure

A Extremly fast for highly porous structures

Adaptive grid insid e the pore space of a
Berea sandstone

A Very low memory requirements MATH
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LIR METHODO 2: BLOCKPDE FORMULATION GEODICT

A Basic idea: split velocity variableo into a left sided &and right sided i variable

n n n
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A The momentum equation is discretized in two ways
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A The mass conservation is discretized with
T 0 p 5
T oo Q

A The Stokes equations are discretized as linear block system of equations per cell and can
be solved by block Gaul¥Seidel / SOR methods combined with Multigrid [Linden et al., 2015]
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LIPPMANN SCHWINGERM ETHODS GEODICT

A Boundary value problem of linear elasticity:

t, T Equilibrium of stresses
, 04 Hookeds | aw

¢i ¢O 6 (069
where 6° is periodic and ,, t £ is anti-periodic

A We introduce a reference material 6 and define a polarization field t

T # 0 )4
A Hookeds | aw can then be transfor med t
s 0d 1
A Equilibrium of stresses can be solved by using the elastic Green operator
P 0 (3271

A Substitution of polarization yields the Lippmann Schwinger equation mouiinec suquet
T 3 7z ((6 6 )Q) (uo 6 ),]—_ ‘O 1994,1998]
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LIPPMANN SCHWINGERM ETHODS GEODICT
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The Lippmann Schwinger equations can be solved by using Neumann series or
Krylov subspace methods using FFT and is implemented in theFeelMath solver

A Basis scheme with Neumann Serieabe! et al., 2014]
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Staggered grid for discretization of displacement, strain, and Stress schneider et al., 2016]
Convergence speed is independent of grid size but depends on phase contrast”
A u() for Neumann series

A w(y) for Krylov subspace methods

Supports isotropic and anisotropic constituent materials

Works for linear and non-linear constitutive equations of stresses

LS methods can also be used to solve conduction or flow equations
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TwWO-PHASEH.OWS AND SATURATION- GEODICT
DEPENDENTPROPERTIES

A The ExplicitJump, SIMPLEFFT, and LIR methods solve the singlephase
stationary (Navier-)Stokes¢Brinkman) equations

A But in many application areas, researchers are interested in
saturation-dependent properties (e.g. relative permeability)

A For relative permeability, we must solve two-phase flow equations
iInstead of single-phase flow equations

A We assume flow regimes where capillary forces caused by surface
tension and capillary pressure are dominating (i.e. low capillary number)

A Solving two-phase flow equations is very challenging and runtimes are
very high

A Here, we present an alternative aj
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PORE M ORPHOLOGYMETHODS

€ predict the distribution
media and the capillary pressure curve

Basic Idea

A O0Pushodé spheres into/outsi
reduce/increase sphere radii[Hilpert and Miller, 2001]

A Superposition of spheres represent the non-wetting
phase

A Perform connectivity checks to consider
trapped/residual phases [Ahrenholz et al., 2008]

A Use sphere radii & Young-Laplacery ¢-AT| Qo

predict the capillary pressure

A Inscribe different contact angles by sphere radii—
[Schulz et. al., 2015]

Advantage

A No partial differential equations are solved
A Very low runtime & memory requirements
Assumption

A Quaskstationary phase distribution

A Low capillary number
- 19 --
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OUTLINE GEODICT
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1. Filtration

Digital Rock Physics
Battery Cathode Materials
Gas Diffusion Layers
Composites
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HLTRATION SIMULATION AT DIFFERENTSCALES GEODICT

1

Filter element
(macro scale)

Single pleat Filter media
. MATH
(macro/meso scale) (micro scale)  2warker




